

Main Contribution

- Unified theoretical framework for continual meta-learning in both static and shifting task environments.
- Formal analysis of the **bi-level learning-forgetting trade-off**
- Theoretically grounded algorithm

Problem Setup

Figure 1. Illustration of Continual Meta-Learning (CML) process

• **Base learner** — batch learning algorithms $W_t = \mathcal{A}(u_t, S_t), u_t \in \mathcal{U}$ • Excess Risk:

 $R_{\text{excess}}(\mathcal{A}, u_t) \stackrel{\text{\tiny def}}{=} \mathbb{E}_{S_t} \mathbb{E}_{W_t \sim P_{W_t \mid S_t, u_t}} \left[\mathcal{L}_{\mu_t}(W_t) - \mathcal{L}_{\mu_t}(w_t^*) \right], w_t^* = \arg\min_{w \in \mathcal{W}} \mathcal{L}_{\mu_t}(w).$ • meta-parameter $u_t = (\beta_t, \phi_t)$, true risk $\mathcal{L}_{\mu_t}(w) \stackrel{\text{def}}{=} \mathbb{E}_{Z \sim \mu_t} \ell(w, Z)$

- Assume $\mathcal{L}_{\mu_t}(w)$ has quadratic growth, we have the unified form of excess risk upper bound:
- $f_t(u_t) = \kappa_t \left(a\beta_t + \frac{b\|\phi_t w_t\|^2 + \epsilon_t + \epsilon_0}{\beta_t} + \Delta_t \right), \ \kappa_t, \epsilon_t, \beta_t, \Delta_t \in \mathbb{R}^+, \ \forall t \in [T], a, b, \epsilon_0 > 0.$ • f_t is **convex**, valide for $\mathcal{A} \in \{\text{Gibbs, RLM, SGD, SGLD}\}$
- Meta learner online learning algorithms
- dynamic regret for N static slots

$$R_T^{\text{dynamic}}(u_{1:N}^*) \stackrel{\text{\tiny def}}{=} \sum_{n=1}^N \sum_{k=1}^{M_n} \left[f_{n,k}(u_{n,k}) - f_{n,k}(u_n^*) \right], u_n^* \stackrel{\text{\tiny def}}{=} \arg \min_u \frac{1}{M_n}$$

• Continual meta-learning objective

— select $u_{1:T}$ to minimize the Average Excess Risk (AER):

$$\operatorname{AER}_{\mathcal{A}}^{T} \stackrel{\text{\tiny def}}{=} \frac{1}{T} \sum_{t=1}^{T} R_{\operatorname{excess}}(\mathcal{A}, u_{t}) \leq \frac{1}{T} R_{T}^{\operatorname{dynamic}}(u_{1:N}^{*}) + \frac{1}{T} \sum_{n=1}^{N} \sum_{k=1}^{M_{n}} f_{n,k}(u_{n}^{*}).$$

DCML Algorithm

- Sample task distribution $\mu_t \sim \tau_t$, Sample dataset $S_t \sim \mu_t^{m_t}$;
- Get meta parameter $u_t = (\beta_t, \phi_t)$, learn base parameter $w_t = \mathcal{A}(u_t, S_t)$, estimate $f_t(u_t)$
- Adjust the learning rate of the meta-parameter (γ_t) with the following strategy:
- When an environment change is detected, γ_t is set to a large hopping rate $\gamma_t = \rho$ • For k-th task inside the n-th environment (slot), $\gamma_t = \gamma_0/\sqrt{k}$
- Update meta parameter $u_{t+1} = \prod_{\mathcal{U}} (u_t \gamma_t \nabla f_t(u_t)), i.e.,$ $\phi_{t+1} = (1 - \frac{2b\kappa_t\gamma_t}{\beta_t})\phi_t + \frac{2b\kappa_t\gamma_t}{\beta_t}w_t, \beta_{t+1} = \beta_t - \gamma_t(a\kappa_t - \frac{\kappa_t(b\|\phi_t - w_t\|^2 + \epsilon_t + \epsilon_0)}{\beta_t})$

Contact Information

- Email: qi.chen.1@ulaval.ca
- Code: https://github.com/livreQ/DynamicCML

On the Stability-Plasticity Dilemma in Continual Meta-Learning: Theory and Algorithm

Changjian Shui ² Ligong Han ³ Mario Marchand¹ Qi Chen¹

¹Laval University, Canada, ²McGill University, Canada, ³Rutgers University, USA

Bi-level Learning-Forgetting Trade-off

Figure 2. Illustration of a shifting environment.

Main Theorem

Theorem 1 (Simplified) Consider both **static** and **shifting** environments. If the excess risk's upper bound of the base learner $\mathcal{A}(u_t, S_t)$ can be formulated as the unified form, then, the **AER** of **DCML** is upper bounded by:

$$\operatorname{AER}_{\mathcal{A}}^{T} \leq \underbrace{\frac{2}{T} \sum_{n=1}^{N} \sqrt{a(bV_{n}^{2} + \epsilon_{n} + \epsilon_{0})} \kappa_{n} + \frac{\Delta_{n}}{2}}_{\text{optimal trade-off in hindsight}} + \underbrace{\frac{3}{2T} \sum_{n=1}^{N} \tilde{D}_{n}G_{n}\sqrt{M_{n} - 1}}_{\text{average regret over slots}} + \underbrace{\frac{\tilde{D}_{\max}}{T} \sqrt{2P^{*} \sum_{n=1}^{N} G_{n}^{2}}}_{\text{regret w.r.t environment shift}}$$

where $V_n^2 = \sum_{k=1}^{M_n} \frac{\kappa_{n,k}}{\kappa_n} \|\phi_n^* - w_{n,k}\|_2^2$ with $\phi_n^* = \sum_{k=1}^{M_n} \frac{\kappa_{n,k}}{\kappa_n} w_{n,k}$, G_n is the upper bound of the cost function gradient norm, and D_n is the diameter of meta-parameters in *n*-th slot. The path length of N slots is $P^* = \sum_{n=1}^{N-1} \|u_n^* - u_{n+1}^*\| + 1.$

- Optimal trade-off $\ll \gg$ average of slot variances V_n^2 (task similarities)
- Task-level regret $\leq >$ slot diameters \tilde{D}_n (task similarities)
- Environment-level regret $\langle = \rangle$ path length P^* (environment similarities, non-stationarity)

AER Bounds of Specific Base Learners

Theorem 2 (Gibbs Algorithm, simplified) Apply Gibbs algorithm as the base learner in **DCML** and further assume that each slot has equal length M and each task uses the sample number m. Then, the AER can be bounded by:

$$\operatorname{AER}_{\operatorname{Gibbs}}^{T} \leq \mathcal{O}\left(1 + \bar{V} + \frac{\sqrt{MN} + \sqrt{P^*}}{M\sqrt{N}}\right) \frac{1}{m^{\frac{1}{4}}}, \bar{V} \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} V_n.$$

- Single-task learning $\mathcal{O}\left((D+1)m^{-1/4}\right)$
- Static environments $\mathcal{O}((V+1)m^{-1/4})$ with rate $\mathcal{O}(1/\sqrt{T})$,
- Shifting environments $\mathcal{O}((\bar{V}+1)m^{-1/4})$ with rate $\mathcal{O}(1/\sqrt{M}), \, \bar{V} \leq V \leq \hat{D} \leq D$
- => Same AER with a smaller M, *i.e.*, faster-constructing meta-knowledge in new environments.

Theorem 3 (Stochastic Gradient Descent(SGD), simplified) Apply SGD as the base learner in **DCML** and further assume that each slot has equal length M and each task uses the sample number m. Then, the AER can be bounded by:

$$\operatorname{AER}_{\mathrm{SGD}}^{T} \leq \mathcal{O}\left(\bar{V} + \frac{\sqrt{MN} + \sqrt{P^*}}{M\sqrt{N}}\right) \sqrt{\frac{1}{K} + \frac{1}{m}}, \bar{V} \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} V_n.$$

- Static environment
- $N = 1, P^* = 1, M = T$
- recover static regret $\mathcal{O}(V + \frac{1}{\sqrt{T}})\sqrt{\frac{1}{K} + \frac{1}{m}}$

for next task

• task-level learning-forgetting trade-off • two tasks $||w_1 - w_2|| > \hat{D}_1/2$ directly adapt => catastrophic forgetting

• keep the optimal prior ϕ_n^* => no forgetting

 $\|\phi_1^* - w_1\| < \hat{D}_1/2 \text{ and } \|\phi_1^* - w_2\| < \hat{D}_1/2$ • $\uparrow \hat{D}_n => \uparrow$ number of examples needed to recover performance with no forgetting

• meta-level learning-forgetting trade-off • large environment shift $\hat{D} \gg \hat{D}_n$ ↑ learning rate of meta-knowledge • ↑ forgetting meta-knowledge inside slots

• Shifting environment • When N is small and P^* is large • better than $\mathcal{O}(\bar{V} + \frac{1}{\sqrt{M}} + \sqrt{\frac{P^*}{NM}})$

 $P(\tau_{t+1} = E_{i+1}) = p, P(\tau_{t+1} = E_i) = 1 - p.$

- better overall learning-forgetting trade-off
- stable to different levels of non-stationarity
- no need for precise environment shifts detection

Experiments

Figure 3. Illustration of the CML experimental setting on synthetic and real datasets. At each time t, the environment changes with probability p. If current environment is $\tau_t = E_i$, the next environment

Figure 4. Running time average test accuracy on OMF dataset of OSAKA benchmark: (a) Omniglot (pre-trained environment), (b) FashionMNIST and (c) MNIST, where the environment shifts with probability p = 0.2. (d) Average test accuracy on overall environment at final step t = 10000 w.r.t p.

