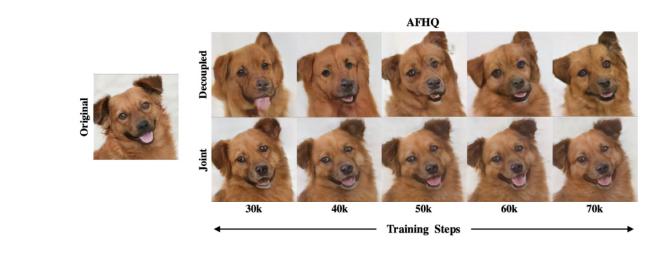
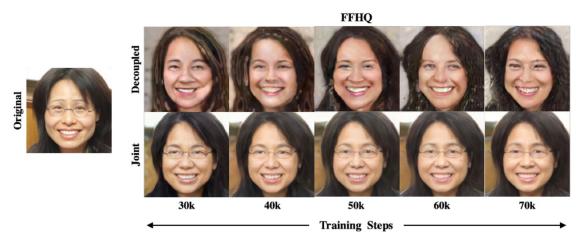


OF NEW JERSEY

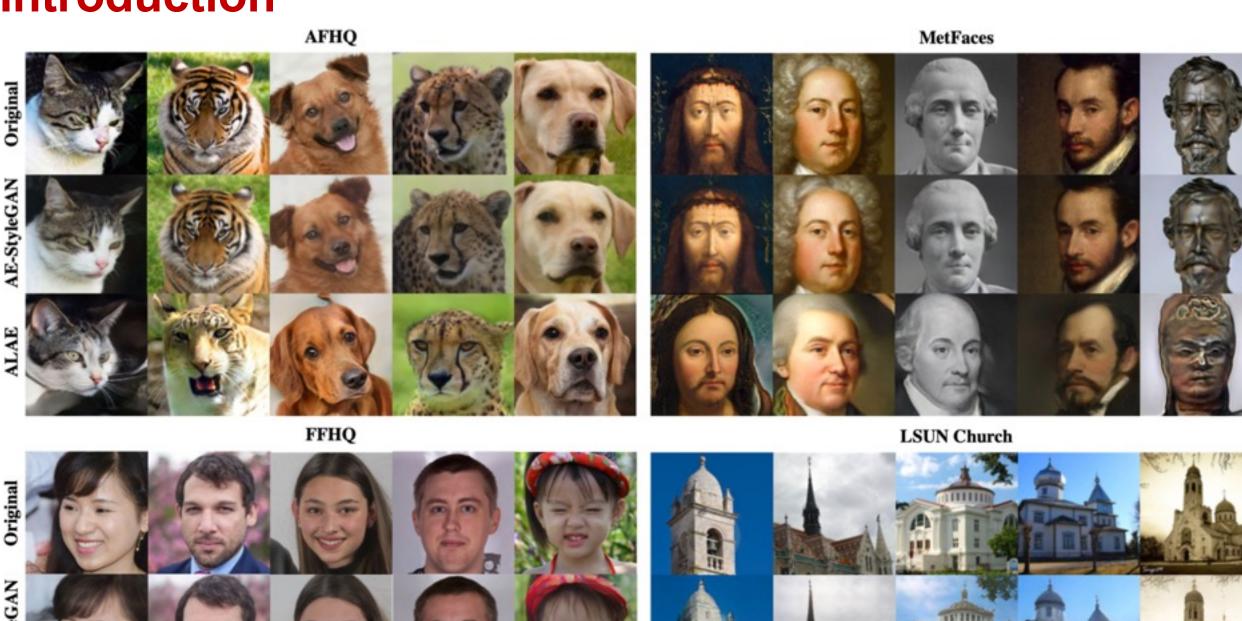
AE-StyleGAN: Improved Training of Style-Based Auto-Encoders

Ligong Han*1, Sri Harsha Musunuri*1, Martin Renqiang Min2, Ruijiang Gao3, Yu Tian1, Dimitris Metaxas1 ²NEC Labs America ³The University of Texas at Austin ¹Rutgers University

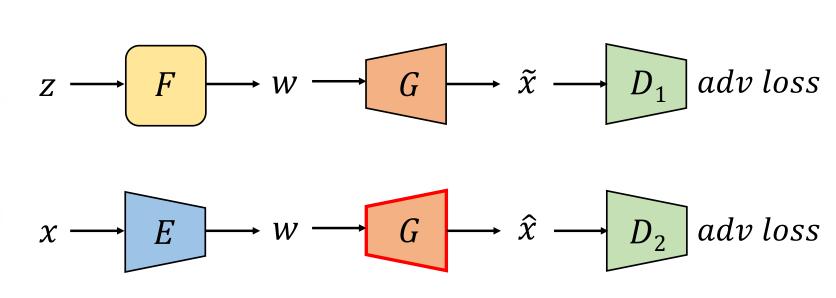




Introduction

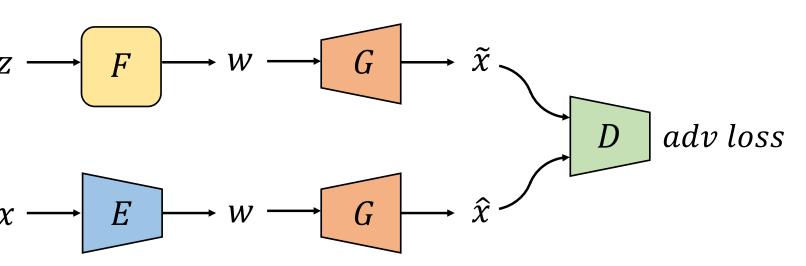


Decoupled AE-StyleGAN



Decoupled AE-StyleGAN

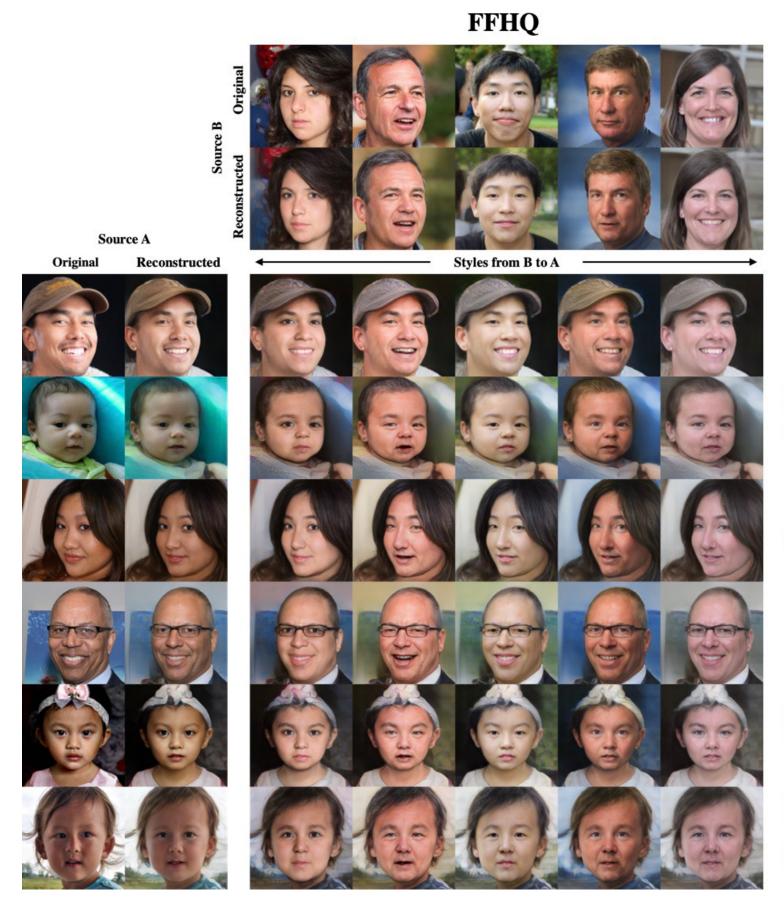
Joint AE-StyleGAN

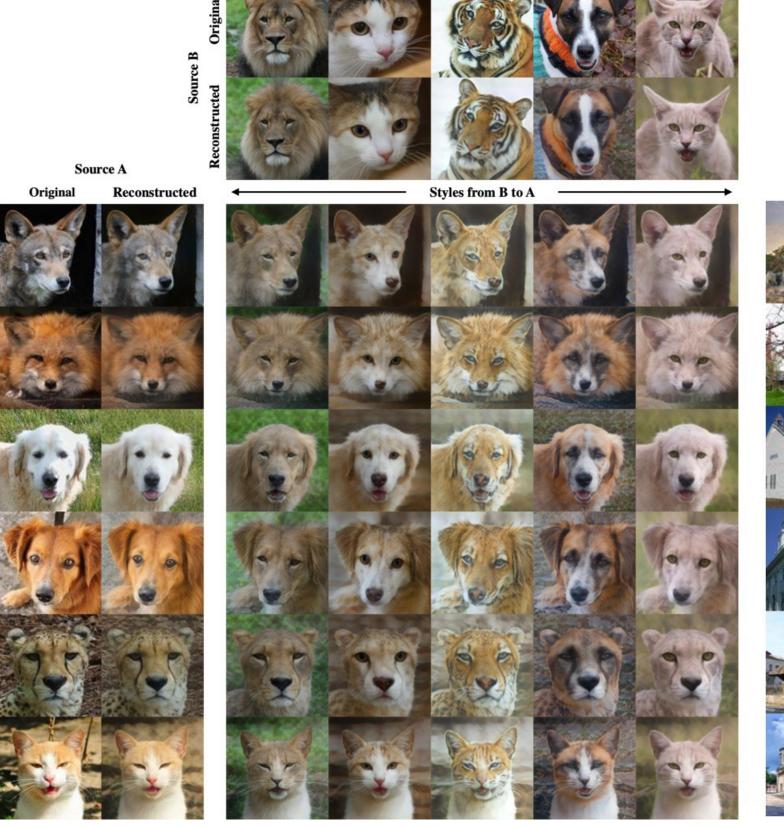


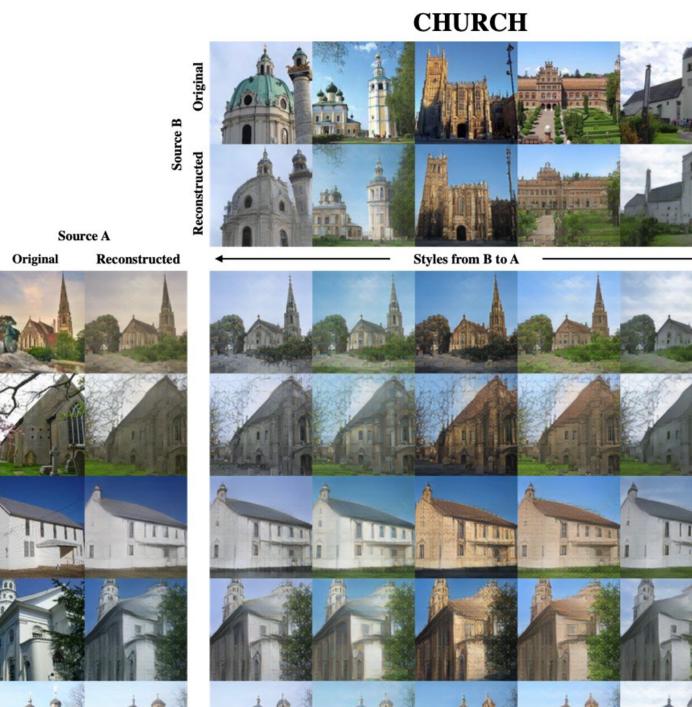
Joint AE-StyleGAN

Experiments

• FFHQ, AFHQ, CHURCH, METFACES – Reconstructions & Style Transfers







Method

Loss Functions

$$V_{\text{GAN}}(G \circ F, D) = -\mathbb{E}_{x \sim P_X} \mathcal{A}(-\tilde{D}(x))$$
$$-\mathbb{E}_{z \sim P_Z} \mathcal{A}(\tilde{D}(G(F(z)))) \qquad (1)$$

Decoupled AE-StyleGAN. One straightforward way to Joint AE-StyleGAN. The generator of a decoupled AEtrain encoder and generator end-to-end is to simultaneously StyleGAN would be exactly equivalent to a standard Styletrain an encoder with GAN inversion algorithms along with GAN generator, however, we often find the encoder not the generator. Here we choose in-domain inversion. To capable of faithfully reconstruct real images. This phekeep the generator's generating ability intact, one can de- nomenon is illustrated in Figure 5. We hypothesize that couple GAN training and GAN inversion training by in- E with E frozen at inversion step, E cannot catch up with troducing separate discriminator models D_1 and D_2 , and G''s update, thus lags behind G. To cope with this issue, we freezing G in inversion step. Specifically, D_1 is involved in $V_{\text{GAN}}(G \circ F, D_1)$ in Equation 1 for GAN training steps, and D_2 is involved in $L_{\text{idinv}}(E, D_2, G)$ in Equation 2. Training of D_2 follows:

$$V_{\text{GAN}}(G \circ F, D_2) = -\mathbb{E}_{x \sim P_X} \mathcal{A}(-\tilde{D}_2(x))$$
$$-\mathbb{E}_{x \sim P_X} \mathcal{A}(\tilde{D}_2(G(E(x)))). \tag{4}$$

Results

propose to train G jointly with E in the inversion step. We

also use a single discriminator for both pathways. For the

 $-\lambda_{\mathrm{adv}}\mathbb{E}_{x\sim P_X}\mathcal{A}(ilde{D}(G(E(x))))$

 $-(1-\lambda_{\mathrm{adv}})\mathbb{E}_{z\sim P_Z}\mathcal{A}(\tilde{D}(G(F(z)))).$

GAN pathway, the value function is written as:

 $V_{\text{AEGAN}}(G \circ F, D) = -\mathbb{E}_{x \sim P_X} \mathcal{A}(-\tilde{D}(x))$

	StyleGAN		ALAE		AE-StyleGAN (W)		AE-StyleGAN (\mathcal{W}^+		
	FID ↓	LPIPS ↑	FID ↓	LPIPS ↑	FID ↓	LPIPS ↑	FID ↓	LPIPS ↑	
FFHQ	7.359	0.432	12.574	0.438	8.176	0.448	7.941	0.451	
AFHQ	7.992	0.496	21.557	0.508	15.655	0.522	10.282	0.518	
MetFaces	29.318	0.465	41.693	0.462	29.710	0.469	29.041	0.471	
LSUN Church	27.780	0.520	29.999	0.552	29.387	0.603	29.358	0.592	

	StyleGAN		ALAE		AE-StyleGAN (W)		AE-StyleGAN (\mathcal{W}^+)	
	Full	End	Full	End	Full	End	Full	End
FFHQ	173.09	173.68	192.60	193.94	181.03	180.23	166.70	165.85
AFHQ	244.83	240.68	229.54	232.53	247.75	248.75	233.86	231.91
MetFaces	231.40	232.77	235.39	237.63	238.84	238.60	240.01	235.41
LSUN Church	245.22	239.62	298.06	295.01	241.46	231.73	240.01	231.49

Algorithm

Algorithm 1 Decoupled AE-StyleGAN Training

- 1: $\theta_E, \theta_{D_1}, \theta_{D_2}, \theta_F, \theta_G \leftarrow$ Initialize network parameters
- 2: **while** not converged **do** $x \leftarrow \text{Random mini-batch from dataset}$
- $z \leftarrow \text{Samples from } \mathcal{N}(0, I)$
- Step I. Update D_1 , D_2
- $L_D \leftarrow -V_{\text{GAN}}(G \circ F, D_1) V_{\text{GAN}}(G \circ E, D_2) \text{ in } 1$
- $\theta_{D_1}, \theta_{D_2} \leftarrow \text{ADAM}(\nabla_{\theta_{D_1}, \theta_{D_2}} L_D, \theta_{D_1}, \theta_{D_2})$ Step II. Update E
- $L_E \leftarrow L_{\text{idinv}}(E, D_2, G) \text{ in } 2 \text{ or } 6$
- $heta_E \leftarrow ext{ADAM}(
 abla_{ heta_E} L_E, heta_E)$
- Step III. Update F, G
- $L_G \leftarrow V_{\text{GAN}}(G \circ F, D_1) \text{ in } 1$ $\theta_F, \theta_G \leftarrow \text{ADAM}(\nabla_{\theta_F, \theta_G} L_G, \theta_F, \theta_G)$
- 14: end while

- Algorithm 2 Joint AE-StyleGAN Training
- 1: $\theta_E, \theta_D, \theta_F, \theta_G \leftarrow$ Initialize network parameters
- 2: **while** not converged **do**
- $x \leftarrow \text{Random mini-batch from dataset}$
- $z \leftarrow \text{Samples from } \mathcal{N}(0, I)$
- Step I. Update D
- $L_D \leftarrow -V_{\text{AEGAN}}(G \circ F, D) \text{ in } 5$
- $\theta_D \leftarrow \text{ADAM}(\nabla_{\theta_D} L_D, \theta_D)$
- Step II. Update E, G
- $L_E \leftarrow L_{\text{idinv}}(E, D, G) \text{ in } 2 \text{ or } 6$
- $\theta_E, \theta_G \leftarrow \text{ADAM}(\nabla_{\theta_E, \theta_G} L_E, \theta_E, \theta_G)$
- Step III. Update F, G
- $L_G \leftarrow V_{\text{AEGAN}}(G \circ F, D) \text{ in } 5$ $\theta_F, \theta_G \leftarrow \text{ADAM}(\nabla_{\theta_F, \theta_G} L_G, \theta_F, \theta_G)$
- 14: end while

Summary

In this paper, we proposed AE-StyleGAN, a novel algorithm that jointly trains an encoder with a style-based generator. With empirical analysis, we confirmed that this methodology provides an easy-to-invert encoder for real image editing. Extensive results showed that our model has superior image generation and reconstruction capability than baselines. We have explored the problem of training an endto-end autoencoder. With improved generation fidelity and reconstruction quality, the proposed AE-StyleGAN model can serve as a building-block for further development and applications.

